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The supersymmetric t - J model in one dimension 

Sarben Sarkari 
Centre for Theoretical Studies, Royal Signals and Radar Eslablirhment, Great Malvern 
WR143PS, UK 

Received 22 March 1990, in final farm 5 November 1990 

Abstract. The f - J  model (related t o  the strong-correlation limit of the Hubhard model) 
is shown to be soluble i n  one dimension using the Bethe ansatz. The solution holds only 
when the Hamiltonian i s  supersymmetric. The ground state i n  the presence of holes is 
found to he gapleas, and to have no magnetization. 

1. Introduction 

There is a strong belief (Anderson 1988, Fukuyama et a! 1989) that electron correlations 
are important in distinguishing the new high-temperature superconductors from con- 
ventional ones. The existence of antiferromagnetism in the absence of doping for the 
new materials is evidence for this. Hubbard (1963) was very influential in the study 
of such correlations. He proposed a lattice Hamiltonian, 

as an example of a system which clearly accommodates the atomic ( I /  U+O) and band 
theory ( U / t  + 0) limits. i and j are nearest-neighbour sites and c,, destroys an electron 
with z-component of spin U at site j .  n,,,, is c h , ,  the number operator. Only the 
low-energy states can have any possible relevance to superconductivity. Since we are 
interested in the strong correlation ( U /  f >> 1)  limit we may take 

for the unperturbed Hamiltonian. For a lattice with N sites and ( N  - n )  electrons the 
ground state of H,, cannot have more than one electron per site. There is a set of 

degenerate ground states of H , , .  From degenerate perturbation theory (Lindgren and 
Morrison 1986, Pike el al 1991) we can construct an effective Hamiltonian Hecc which 
operates on this set but has the same low energy spectrum as H. Since the Hilbert 
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space of He,, is much smaller than that for H this 'effective' description is very 
economical. The resultant Heri is 

where P is the projection operator onto the set of ground states of Ho, J = 2t2 /  U (  << I), 
Sj is a spin operator and site k is a nearest neighbour to sites i and j. The connection 
of H and Herr with the copper oxide-based high-temperature superconductors is not 
obvious. Indeed it is generally accepted that there is substantial overlap of the electron 
orbitals on copper and oxygen. This would naturally lead to an H also involving 
creation and annihilation operators for oxygen orbitals. Zhang and Rice (1988) nonethe- 
less showed that an effective model similar to (3) can emerge where J S  f. Further 
support for the validity of this model with parameter values as large as J -  1.531 has 
been given recently (Jefferson 1990). 

For n j N cc 1 the three-site terms in Herr are smaii compared with the other terms 
and are often ignored. The resulting He, is called for obvious reasons the f - J 
Hamiltonian (H,-,). In  a recent letter (Sarkar 1990a) the method of solution for this 
model in one dimension where J/2f = 1 has been indicated. At this point in parameter 
space He, is invariant under the group of transformations of a supergroup U(lj2)  
(Wiegmann 1988, Cornwell 1989, Sarkar 1990b). Details of this solution which uses 
the Bethe ansatz (Bethe 1931) will now be given. In particular we will find the ground 
state and excited state energies as a function of concentration near half filling. This 
solution is not a simple consequence of the Bethe ansatz solution of the Hubbard 
model (Lieb and Wu 1968) for two reasons. Firstly the large U / t  limit of the Hubbard 
model has three-site terms and secondly J is not very much less than 1. 

2. Supersymmetry 

H,-, operates on a Hilbert space which is spanned by states of the form 

8 14 

where 0 denotes a direct product and In;) is IO), II) or It). I&) and It) represent Wannier 
states with spin down and spin up respectively. 10) is a hole state. With the basis lai) 
it is natural to associate operators 

xy = la;)(P;l. (4) 

Now Xy' has a fermionic nature since it destroys an up-spin electron whereas XT' is 
bosonic. This leads naturally to an operator algebra involving both commutators and 
anticommutators, the latter occurring only if both operators are fermionic. The resulting 
so-called superalgebra is 

[ X y ,  xy'@'],= S,(XPP'SSU.fX7'PS@.")  (5) 
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where [ , I+  is an andcommutator and [,I- is a commutator. It is standard (Bars and 
Gunaydin 1983) to represent these operators in terms of a bosonic and two fermionic 
harmonic oscillators, e.g. 

Xp" = f :b:  xy= f Y + f Y  Xp"= b:b, ( 6 )  
where 

[fr,JYI+ = S , d ,  [f:',J;''l+ = [f:+,f,"'+l+ = 0 (7 )  

and 

[ b , , b $ = S ,  [b j ,  b , l - = [ b ; ,  b:]-=O. (8) 
This representation will be useful later. 

projection operators P. Since we are dealing with spin-f we can write 
Using the X-operators it is possible t o  rewrite H,-,  without the formal use of 

( 9 )  
J 

J ( S , .  s, -i)  --(U; uj - 1) 
- 4  

where ui are the Pauli spin matrices at site i. This can be further rewritten as 

J 
2 
- ( p ,  - 1) 

where 

P,j = f (  Uj' U, + 1). (10) 

ejlu);lu'), = l4Mj (11) 

e.,+, = 1 X:.'"'x::. (12) 

It is easy to verify that 

so that P, is a permutation on spin labels. In terms of the X-operators: 

C,iY' 

We need to write Sn,,Sn,+, I (where n, = ni ,+n i i )  in terms of X-operators as well. We 
first note that 

Z:s.,,=Z:s",,~",*,,+fZ:(~","6,,+,,+S,~,S,,*,,) (13) 

1 (Sn ,o+&, i )=N (14) 

and 

1 ( S n , o S n , , , o +  %I&,+, i + 6 n , d n , + , ,  + &,a&,+,o)= N (15) 

where N is the number of lattice sites. The validity of (13) and (15) is best established 
by examining examples. From (13) and (15) we have 

2 ~ ( 6 , , , 0 - G , , u s n , , , o ) + ~ S , , , S . , t , , + ~ ~ S , , a S , , * , , = N  (16) 

and on using (14) we deduce 

18",,~",*,, =I b%+>"-1 %"+I a",, 
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Since 
on DO 1 wt,*,o=1 x, x,+, 

(and Z, a,,,, and X, am,, are constants) we can write 

up to an additive constant. (A  summation convention is U 3erstc 
H '  which is more general than H , - ,  may then be written as 

3.) A Ha 

(19) 

iltonian 

g, g' and g" being consianis. 
H,- ,  is obtained when 

J 
2 g = - 1  g'=-=- g" (21) 

(provided we make the canonical transformation b; - (-l)'bj in (6)). 
The generators X "  (=Z Xp"), X"" ( = Z  X:Fo) and X""' ( = Z  X:"') form a superal- 

gebra isomorphic to the single site superalgebra. The bosonic generators X""' commute 
with the Hamiltonian for arbitrary g, g' and g". For H '  to be supersymmetric (with 
respect to this superalgebra), it remains to check that the condition 

L J  A -  

is satisfied. Now 

and so 

For (22) to hold we require 

= g"= -g' (27) 

which we will call the supersymmetric 1 - J model. In the next section we will show 
how the resulting Hamiltonian can b e  interpreted as a generalized permutation operator. 
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Owing to the predominance of supersymmetry applications in a particle physics 
context it is often assumed that the supersymmetric algebra contains the Poincare 
algebra as a subalgebra (Cornwell 1989, p 79).  Consequently the Hamiltonians can be 
expressed in terms of bilinears in the fermionic generators (e.g. see de Crombrugghe 
and Rittenberg 1983). The f - J Hamiltonian is not of this kind and the supersymmetry 
is of a kinematic type. Our use of the term 'supersymmetry' is similar to that adopted 
quiic ~uriir~rurrry 111, I U I  cnanryrc, i iuuear pnysics ~ i n ~ n c i i o  ~ r a , , .  :- ' - ^ _ . . . . _ _ I .  I... ~-,~~.:.- I . . .  L - I I ~  4 n O C \  

3. Generalized permutation operator 

In terms of the harmonic oscillator representation the hopping term in H,-, is 

f 1 (bb:+,f:'%",, +b,+lbTfY21f?). 

As a consequence each site of the lattice is occupied by the boson or a fermion (either 
an up or down fermion). The constraint on  the Hilbert space of no double occupancy 
is 

b:bj +fk = 0. (28) 

A generalized permutation operator will interchange fermions and bosons (as well as 
interchange just fermions) with the same amplitude. The relevance of such operators 
will now be discussed. The permutation aspect of the Heisenberg term has already 
been discussed and was in fact noticed by Bethe (1931). The hopping term is also a 
permutation operator but now between bosons and fermions. We will examine this 
aspect through an example. A lattice with (N-4) up spins, two down spins and two 
hole has a state I#)  of the form 

(29) 

where . . . denote creation operators for up spins. For definiteness we consider the part 

a ( i , i + l , k , k + l )  . . .  b:bj+,f!: ,...f:T,f:'f::,f::2...10) 

I # )=  1 a ( i , j , ~ / )  .,. b ~ . . . b ~ . . . f ~ + . . . f ~ ' . . . l O )  
i.;.k,I 

of I#) 

and operate on it with 

t(bj+, b:+Zf :If 1 1 2  + bj+,b:+,f CJ"7+i) 
a part of H,-,. Now 

. . .  b,,,b~+,fi:,fi+,b:b:+,f i~~...  IO)= . . .  b ~ + , b ~ + ~ b ~ b ~ ~ + , f ~ ~ , f ~ + ~ f  ~ ~ ~ . . . l O )  

and 

(30) 

f!Af/+>fL =f%1 -f!:,f?+d. (31) 
The last term in (31) when pulled through in (30) gives zero. Consequently (30) becomes 

.. , L (32) 

The hole at ( ; + I )  and the up spin at ( i + 2 )  have thus been swapped. This is just the 
effect of a permutation operator which will be denoted by P!$'!,',+,. The same result is 
found by examining other cases. H , _ ,  can then be written as 

h" hfht <ti , , , In\- ,",-. .. b:+,b,,,+, T f T *  . , . I O ) = .  .. b ~ f ! ~ , b ~ * z . .  .IO). 

H,-, = f 1 Pf::; +:! (I: (+, - Pig:':) (33) 
i." 
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with 

(34) 
t t  P\?+"i(. . . b i b i + ,  . . .  )IO)=(. . . b f + , b : .  . .)IO). 

The arguments above easily generalize to a situation when there are more 'flavours' 
of fermions. 

The permutation symmetry of the ground state can be determined without a detailed 
caicuiation of energies for different Young tableau representations. The argument has 
been essentially given by Lai and Yang (1971) who restricted themselves to two flavours 
but their reasoning applies also to the case of more flavours. If there is an odd number 
N '  of fermions of flavour i ( i  = 1, .  . . , m) and N o  bosons (with .Zt N ' +  NO= N )  then 
the permutation symmetry of the ground state is given by the Young tableau 

( m + N o ,  mN,m,-',(m- l)Nm-~CN,,r (m - 2) %-~-N, , , - t  

The precise nature of the Hamiltonian played n o  role in the discussion of Lai and 
Yang. They dealt with a continuum and allowed double occupation at a site. The 
continuum aspect was not relevant to their argument while the amplitude for double 
occupation can be made arbitrarily small by adding an energy penalty term to their 
Hamiltonian. Consequently the result of (35) is implied by Lai and Yang also for our 
case. It will be convenient to work with the conjugate Young tableau representation 
(Andrei et al 1983) which is equivalent to a canonical transformation on the variables 
(Sarkar 1990a). 

). (35) 1 (N,-N,l 
, . . . I  

4. Bethe ansatz 

As an example of a simple case away from half-filling let us consider a lattice with 
( N  - 2 )  up spins, one down spin and one hole. Any state I#) of this lattice has the form 

(36) 1' T t  i t  r*  I#)= Z: a(x , ,x&fi ' f2  . . . C t f X , f x , + a  ...bz2...fC10). 

The down spin and hole are located at x, and x2 respectively. We now demand that 
I$) is an energy eigenstate and so 

XIJI  

HI$)= El$). (37) 

For xI and x2 far apart 

-J  
2 

E a ( x , ,  x ~ ) = - ( ( Y ( x ~ +  1, x2)+ a ( x ,  - 1, xJ)+ I ( a ( x , ,  x2- 1)+ a ( x , ,  x2+ 1)). (38) 

The Bethe ansatz is 

a(X1, x2) = OQ(xt 1 x2) 

= A i ( Q )  exp(i(klxo,+k2x~,))+A,(0) e x ~ ( i ( k ~ x ~ ~ + k ~ x o d )  (39) 

where Q is an element of S2 the permutation group on two objects and defines a sector 
xQl <xQ2.  For brevity 
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will he denoted by  1 and 

J 
21 

1 --= (41) 

This is also the supersymmetric condition (27). Henceforth we will choose units and 
phases so that f = -1 and also require (41) to hold. For the term in (36) proportional 
to 

f!'f!'b:,f?:+if!:+2.. . f f i ' l O )  
the energy eigenstate condition gives 

 CO COS k,+cos k2)+  l ) a ( x , ,  x,+ 1 )  

= a ( x l + l , x , ) + a ( x , ,  x , + 2 ) + a ( x ,  - 1 ,  x , + l )  (42) 

and 

SUP COS k ,+cos k , ) + l ) a ( x , + l , x , )  

= a ( X , , X , + l ) + a ( x , + l , x , - l ) + a ( x , + 2 , x , ) .  (43) 

A,(2) = u'*A2(2)+ u"A,(l) A,(1) = ~ ~ ~ A , ( l ) f u ~ ~ A ~ ( 2 )  (44) 

These two equations lead to 

where 

and 
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We need, of course, to be also able to consider situations other than that of (29). If 
there are N1 down spins at x,. . . . , xN1 and N holes at x N ! + , ,  . . . , xNitN" then the 
Bethe ansatz is 

U 

where S(xQ) denotes the region xQl < xQ2 < . . . < XQ(Ni+No) .  

For the Bethe ansatz solution to work, entities such as uI2  and u12 have to satisfy 
some identities. However we will not explicitly check these consistency conditions 
since we have shown elsewhere (Sarkar 1990a) that the supersymmetric f - J model 
can be mapped onto a model of Lai (1974). The latter model has been shown by Lai 
to be soluble by the Bethe ansatz. 

In order to proceed further, periodic boundary conditions have to be imposed on 
the wavefunction. This is by now a standard although somewhat complicated procedure 
(Yang 1967, Sutherland 1975, Lai and Yang 1971) and is known as the generalized 
Bethe hypothesis. It is discussed in detail by Andrei er a /  (1983) and so we will just 
give the results of the procedure. Apart from the ks involved in the Bethe ansatz, some 
auxiliary variables A appear which are related to a proper description of the permutation 
symmetry of A p ( Q ) .  The equations that emerge are 

and 

(49) 

where a, = f tan fk,. It is customary to take the logarithm of these equations. If 

e(x) = -2 tan-' x (50) 

then 

On taking logarithms of both sides of (51) we get 

@=- i log  (;;;?) - + 2 d  

where J is an integer. Using these elementary facts, (48) and (49) give 
N ~ + N "  N" 

x = ,  y = ,  
Nk,=2?rl,- 1 B(a,-ak)+ x 0(2a,-21\,) (53) 

These equations readily generalize to the m fermion flavour case alluded to earlier. In 
!he genera!ized &!he hypo!hesis i f  there ate m fermion flavours then there are ( m  - 1) 
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flavours of A. The resulting equations are 
N - N 1  N - N - N 2  

Nk,=27rJ,- B ( a , - a k ) +  x 0(20,-2Ab) 
k = l  ? = I  

and 
N--Z;LIN' 

1 e(2A:~'-2AT-2)+27rJ15,~' =O. 
?=I 

The r on A' is the flavour index and the range of y is 1 s y s ( N  -Z;t: N'). 
We will leave further discussion of the m flavour case for elsewhere. For any lattice 

of macroscopic size, (53) and (54) are too complicated. Consequently we will follow 
the customary practice and convert to a set of coupled integral equations. The reasonable 
assumption is made that 

and 

From (53) 

N-N,-N'  

Y =  I 
- 1 (0(2aj+ ,  -2Ab)- 0(2aj -2Ab)) 

+2N[tan-'(2qi,,) -tan-'(2qj)]. (57) 
The general experience with the Bethe ansatz shows that for the ground state J,+, --Ii = 1. 
Excited states appear when there are j' such that J,.+, -4, = 2. J' is called a hole. Hence 

N-N' N - N ' - N '  

= 1 eyaj -ak) (a j+ , -a j )  1 e ' ( z a , - 2 ~ : ) 2 ( ~ ~ + , - ~ ~ )  
k = l  y = ,  

where 
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In the N + W  limit p ,  is a distribution and the sums on the right-hand side of (59) 
become integrals, and consequently 

These integrals will have limits which we will take to be [-aU, a,] and [-AA, AA] and 
we will see how these are determined by the concentrations of down spins and holes. 
Similarly from (54) 

If A Y  are the hole values of A', then 

where p 2 ( h 1 )  is the continuum limit of ( 2 ~ r / N ) [ l / ( A b + , - A b ) l .  

Ab lies in the interval [ I ,  N -  N I -  N'] .  Hence 
We recall that the index j in a, lies in the interval [ l ,  N -  N I ] ,  and the index y in 

and 

The energy E is 

E = 2 ( 2 N ' +  N 2 )  - 2 N  - 2 1 COS k, 

Since 

1-tan'fk, 1-4a: 
l+tan2fk, 1+4a: 

- cos k, = 

then 

From (64) and (65) it is clear that 

AA=O and a"=" (69) 

corresponds to the half-filling case where the model reduces to the Heisenberg model. 
In general the integral equations (61) and (63) need to he solved numerically or through 
approximate application of Wiener-Hopf techniques (Andrei .et al 1983). We will give 
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an analytic treatment valid near half-filling, i.e. a, very large and AA very small. This 
will enable us to obtain limited information such as the gaplessness of the ground 
state. Let us first check what sort of half-filling is implied by (69). Equation (61) becomes 

On writing 

and on noting that 

it is found that 

Since 

p , ( a ) d a = b , ( O ) = ~  
N 2 T  

(72) 

(73) 

(74) 

NI,"=$ (75) 

and so there are an equal number of up and down spins. 
We shall consider the effect of introducing a small macroscopic number of real 

holes (as opposed to Bethe ansatz holes). Consequently AA will be small. Let us write 

p , ( a ) = p \ " ( a ) + p \ " ( a ) + .  . . (76) 

and 

where pi"(a) and pY'(A') are small corrections due to doping 
From (61) in the absence of Bethe ansatz holes we obtain 

1 
piO'(a ')+- T _m d a '  l + ( a - a ' ) 2  Pi"'(.') I -"" 1 

( p y l ( a )  actr?a!!y also depends implicitly on a, and Ab and more properly should be 
written as p:"(a, a", Ah).) 

Since pi"(.') is small it is a good approximation to write 
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(Similarly from ( 6 3 )  for completeness we note 

although we will not need the explicit form of p:"(A') for our first-order calculation.) 
On solving (79) by Fourier transformation we find 

1 1 
1 +(a , -a )  2 +  1 +(a,+a)2 

The magnetization M is 

M = ; ( N I  - N')  = f (  N - Z (  N -  N I ) + (  N - N I -  N * ) )  (83) 
and on using (82) we have 

However a, is a function of A", i.e. given a certain doping level the spins align 
themselves in such a way so as to minimize the energy. We therefore need to calculate 
the energy. From ( 6 8 )  we have 

i a  

After a certain amount of analysis it is possible to show that 

where 

and 

m r + f  
r- I (r+f) '+a2'  

g ( a ) = f  1 (-l)'+' 

Using asymptotic estimates for f and g we can deduce 

a& 
aao 
- < O  
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and so the minimum of  energy is found for an = m. Equation (84) then implies that 

M = O  (91) 

In order to consider excited states we have to examine the effect of Bethe ansatz 
in the ground state. 

holes (Andrei el a/  1983). Now we let 

p , ( a )  + p , ( a )  + A p , ( a  j (92) 

and 

~ ~ ( A ' ) + P ~ ( A ' ) + A P ~ ( A ' )  (93) 

where Ap,(o l )  and Ap2(A')  are changes in p ,  and p2 due to the presence of Bethe 
ansatz holes: C!car!y from (61) znd (6?)  

and 

These equations can be solved by Fourier transforming. We obtain 

where Ab, is the Fourier transform of A p , .  Similarly 

Consequently, since 

we have 

We can now calculate the change in energy A E  due to the Bethe ansatz holes. From 
(68), (85) and (96) we have 

The change in the magnetization A M  by definition is 

A M  = f ( - 2 A ( N  - N ' ) + A ( N  - N '  - N 2 ) )  
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which on using 

and 

gives 

AM = fNh 

and 

The gap above the ground state in (100) is zero since [cosh(2na))]-l can be chosen 
to be arbitrarily small (or a) arbitrarily large) and A; taken to be non-zero. For these 
same conditions A ( N -  N ' )  is -fNh which has to be an integer. Consequently the least 
complicated zero-energy excitation that has been constructed has angular momentum 
1. We have thus obtained valuable information from (61) and (63) with our simple 
approximation. Our analysis of the f - J model bears throughout a strong resemblance 
to that for the Heisenberg model. Many generalizations of the latter are possible but 
for both physical and mathematical reasons the supersymmetric generalization that 
we have considered is a particularly non-trivial one. 
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