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The supersymmetric ¢ —J model in one dimension

Sarben Sarkart

Centre for Theoretical Studies, Royal Signals and Radar Establishment, Great Malvern
WRI4 3PS5, UK

Received 22 March 1990, in final form § November 1990

Abstract. The t —J modei {related to the strong-correlation limit of the Hubbard model)
is shown to be soluble in one dimension using the Bethe ansatz. The solution holds only
when the Hamiltonian is supersymmetric. The ground state in the presence of holes is
found to be gapless, and to have no magnetization.

1. Introduction

There is a strong belief {Anderson 1988, Fukuyama et al 1989) that electron correlations
are important in distinguishing the new high-temperature superconductors from con-
ventional ones. The existence of antiferromagnetism in the absence of doping for the
new materials is evidence for this. Hubbard (1963) was very influential in the study
of such correlations, He proposed a lattice Hamiltonian,

H=% lcf(,c,-,,+-gz N o, {1)

@ e
as an example of a system which clearly accommodates the atomic (t/ U = 0) and band
theory (U/¢- 0} limits. i and j are nearest-neighbour sites and ¢, destroys an electron
with z-component of spin o at site j. n;, is ci.Ci,, the number operator. Only the
low-energy states can have any possible relevance to superconductivity. Since we are
interested in the strong correlation (U/ > 1} limit we may take

HO = {EJ Z nr‘,rrnj,—(r (2)

for the unperturbed Hamiltonian. For a lattice with N sites and (N — n) electrons the
ground state of H, cannot have more than one electron per site. There is a set of

N \onos
(N—n)2

degenerate ground states of H,. From degenerate perturbation theory (Lindgren and
Morrison 1986, Pike et al 1991} we can construct an effective Hamiltonian H.q which
operates on this set but has the same low energy spectrum as H. Since the Hilbert
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1138 S Sarkar

space of H, is much smaller than that for H this ‘effective’ description is very
economical. The resultant H; is

Hef'f= P(I Z C;!;r‘:jrr+~’ Z (Si'sj—}li)n,-nj
Cify {if)

o

J . ‘ X 3\
— (Zk: (c:unk.—rrcju + c-l'r,—ack,—-(rc-f:uq-r)) P (3)
ki)

where P is the projection operator onto the set of ground states of Hy, J =213/ U(« 1),
8, is a spin operator and site k is a nearest neighbour to sites i and j. The connection
of H and H. with the copper oxide-based high-temperature superconductors is not
obvious. Indeed it is generally accepted that there is substantial overlap of the electron
orbitals on copper and oxygen. This would naturally lead to an H also involving
creation and annihilation operators for oxygen orbitals. Zhang and Rice (1988) nonethe-
less showed that an effective model similar to (3) can emerge where J=< 1 Further
support for the validity of this model with parameter values as large as J~ 1.53t has
been given recently (Jefferson 1990),

For n/ N « 1 the three-site terms in H. are small compared with the other terms
and are often ignored. The resulting H. is called for obvious reasons the #—J
Hamiltonian (H,_;). In a recent letter (Sarkar 1990a} the method of solution for this
model in one dimension where J/2¢ =1 has been indicated. At this point in parameter
space H.y is invariant under the group of transformations of a supergroup U(1/2)
(Wiegmann 1988, Cornwell 1989, Sarkar 1990b). Details of this solution which uses
the Bethe ansatz (Bethe 1931) wiil now be given. In particular we will find the ground
state and excited state energies as a function of concentration near half filling. This
solution is not a simple consequence of the Bethe ansatz solution of the Hubbard
model (Lieb and Wu 1968) for two reasons. Firstly the large U/t limit of the Hubbard
model has three-site terms and secondly J is not very much less than ¢

2. Supersymmetry

H,_, operates on a Hilbert space which is spanned by states of the form
@ las)

where ® denotes a direct product and |e;) is |0}, [1) or [1). |1} and |}) represent Wannier
states with spin down and spin up respectively. |0) is a hole state. With the basis |e;)
it is natural to associate operators

X’ =le)(Bil. (4)

Now X" has a fermionic nature since it destroys an up-spin electron whereas Xis
bosonic. This leads naturally to an operator algebra involving both commutators and
anticommutators, the latter occurring only if both operators are fermionic. The resulting
so-called superalgebra is

[X 08, X3P, = 8,(X 7 8ga % XTP85.) ()



The supersymmetric t —J model in one dimension 1139

where [,]). is an anticommutator and [,]_ is a commutator. It is standard (Bars and
Giinaydin 1983) to represent these operators in terms of a bosonic and two fermionic
harmonic oscillators, e.g.

X2 =f7b] X7 =f7f7 Xi{"=bb, (6)
where

L7 f7 ) = 8,08 LA =7 " =0 (7)
and

(b, b]]- =8, [, &,1-=[b], b]]1-=0. (8)

This representation will be useful later.
Using the X-operators it is possible to rewrite H,_; without the formal use of
projection operators P. Since we are dealing with spin-3 we can write

I

J(8-8—3)= (tr o,— 1) (9}
where o; are the Pauli spin matrices at site i. This can be further rewritten as

J

5 (Pij -1)
where

P;=3(o;a,+1). (10)
It is easy to verify that

R‘,‘IU){JU%:IO"HU);' (11)
so that P; is a permutation on spin labels. In terms of the X-operators:

Py = Z X7UXS. (12)

We need to write 6,18, 1 (where s, = n;;+n,;) in terms of X-operators as well. We
first note that

Z 5:1,0 ::Z 6n;08n;+10+% Z (8n,08n”] 1 + ﬁnilan,-ﬂo) (13)

T (8not8,0)= N (14)
and

Z (an,Oan,ﬂO+ Sn,lan,-ﬂl + 5n,(}6n,+|l + aniian‘ﬂ[)) = N (15)

where N is the number of lattice sites. The validity of (13) and (15) is best established
by examining examples. From (13) and (15} we have

2 Z (8,0~ Bua0n,..0) +§; Bun 5n1+,l+z 8a,080, 0= N (16)

and on using (14) we deduce
Z_ an,-lan,-ﬂl =Z 6:1;051'1,‘“0_2 6n,0+2 6»,1 . (17)
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Since
Z anloanﬁlﬂ Z X00X|+1 (18)
{(and %, 8, , and X, 8, are constants) we can write
‘I e’ e J
_Z (=S =-le il ZXUO |+l (19)
25 25
up to an additive constant. (A summation convention is understood.) A Hamiltonian
H' which is more general than H,_;, may then be written as
H'=g} (X7 XU +XTXI)+g Z X”"Xi’+‘{+g"ZX“°X.+. (20}

g, g’ and g" being consianis.
H,_; is obtained when

r

J
g=-t g=5="¢ (21)

(provided we make the canonical transformation b, - {(~1)b; in (6)).

The generators X° (=X X?7), X"% (=X X?°}and X"” (=X X!”) form a superal-
gebra isomorphic to the single site superalgebra. The bosonic generators X commute
with the Hamiltonian for arbitrary g, g" and g". For H' to be supersymmetric (with
respect to this superalgebra), it remains to check that the condition

[z X" H ] =0 (22)

aJ-

is satisfied. Now

[ZX ,g):(X"OX 1+X2’+°1X?"')]
i —

=g X (XPXW L+ XT7X0+ X0 X0+ XX (23)
[Z. XJ7 g LXTTX :’i‘."] g T (XX + X7 XL (24)
J i - i
and
Lz 00 1 " Gor g 00 Q0 5 rider
I_EX” "ZX X.+|J =g z(xi i+ XX (25)
and so

[E X, H'] = (g~ L (XPX+ XWX+ (g4 8) T (X7 XY+ XX,
J i | (26)
For (22) to hold we require
=g'=~g (27)

which we will call the supersymmetric 1 —J model. In the next section we will show
how the resulting Hamiltonian can be interpreted as a generalized permutation operator.
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Owing to the predominance of supersymmetry applications in a particle physics
context it is often assumed that the supersymmetric algebra contains the Poincaré
algebra as a subalgebra (Cornwell 1989, p 79). Consequently the Hamiltonians can be
expressed in terms of bilinears in the fermionic generators {e.g. see de Crombrugghe
and Rittenberg 1983). The ¢ —J Hamiltonian is not of this kind and the supersymmetry
is of a kinematic type Our use of the term ‘supersymmetry’ is similar to that adopted

PR PP JR- S, -

guite commonly in, for example, nuclear physics (Iachello 1985).

3. Generalized permutation operator

In terms of the harmonic oscillator representation the hopping term in H,_, is
1 ot o o I
tz(bibf+1fi ' i+l+bi+lbjfi~;rl i )'

As a consequence each site of the lattice is occupied by the boson or a fermion (either
an up or down fermion). The constraint on the Hilbert space of no double occupancy
is

bib;+ finfir = 0. (28)
A generalized permutation operator will interchange fermions and bosons (as well as
interchange just fermions) with the same amplitude. The relevance of such operators
will now be discussed. The permutation aspect of the Heisenberg term has already
been discussed and was in fact noticed by Bethe (1931). The hopping term is also a
permutation operator but now between bosons and fermions. We will examine this
aspect through an example. A lattice with ( N —4) up spins, two down spins and two
hole has a state |/} of the form

(.p)_ a(lj,k,l) bl AT (29)

where . .. denote creation operators for up spins. For definiteness we consider the part
of [y}

a(iy i+ 1,k k+1). . bl fl LA 0
and operate on it with

t(b bl St biabin fERST0)

a part of H,_;. Now

b}+|bl+2fi'+lfl+2 r+1 .+2 |0>" b.+lbn+2b b;+1 :+|f.+? aT+2 l0> (30)
and

it =0 =rlhrle). (31)

The last term in (31) when pulled through in (30) gives zero. Consequently (30) becomes

B bbb I 0 = BB 0 = bl b 0. (32)

The hole at (i+1) and the up spin at (i +2) have thus been swapped. This is just the
effect of a permutation operator which will be denoted by Pf+f’,+2 The same result is

found by examining other cases. H,_, can then be written as

J
H._,= IZ Pi?irl)-"iz (P — P&?m (33)
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with
SO BIbL L 0y = (... bl b] .. )0 (34)

The arguments above easily generalize to a situation when there are more ‘lavours’
of fermions.

The permutation symmetry of the ground state can be determined without a detailed
calculation of energies for different Young tableau representations. The argument has
been essentially given by Lai and Yang (1971) who restricted themselves to two flavours
but their reasoning applies also to the case of more flavours. If there is an odd number
N' of fermions of flavour i (i=1,..., m) and N° bosons (with £, N'+ N”= N) then
the permutation symmetry of the ground state is given by the Young tableau

(m+ NO, m™™ (m— 1) e ™Mo (= 2) Moz Mo 1NNy (35)

The precise nature of the Hamiltonian played no role in the discussion of Lai and
Yang. They dealt with a continuum and allowed double occupation at a site. The
continuum aspect was not relevant to their argument while the amplitude for double
occupation can be made arbitrarily small by adding an energy penalty term to their
Hamiltonian. Consequently the result of (35) is implied by Lai and Yang also for our
case. It will be convenient to work with the conjugate Young tableau representation
(Andrei et al 1983) which is equivalent to a canonical transformation on the variables
(Sarkar 1990a).

4. Bethe ansatz

As an example of a simple case away from half-filling let us consider a lattice with
(N —2) up spins, one down spin and one hole. Any state |¢) of this lattice has the form

lgy= T alx,, ) f I A bl VIO (36)

XXz

The down spin and hole are located at x; and x, respectively. We now demand that
|4} is an energy eigenstate and so

Hly) = E[¢)- (37)

For x, and x, far apart
—J
Ea(xl,x2)=7(a(x1+1,x2)+a(xl-—1,xz))+r(a(x1,x2—1)+a(x,,x2+1)). (38)

The Bethe ansatz is
a(x,, x;)= Qo(xn 5 X2)
= A,(Q) exp(i(k,xg; + kaxg2)) + Ax( Q) exp(i(kaxg, + ki X02)) (39)

where Q is an element of S, the permutation group on two objects and defines a sector
Xg1 < Xg;. For brevity

o(; 3)
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will be denoted by 1 and

()}

by 2. A\(Q), A;(Q), k,, and k, are constants which need to be determined.
Equation (37) implies that

E(A (1) exp(ilk,x; + kyx;)] + A, (1) explilkox, + ki x,)])
= —-2{ (A (1) exp{ilk,(x,+ 1)+ kox, 1+ A2(1) expfil ka(x, + 1)} + Ky x2 ]}

+ A (1) expfilk, (x, — 1) + kox, ]} + Ax(1) exp{i[ ko(x, — 1} + ke xo]H
+1(A(1) exp{ilk,x; + k;(x; — 1) ]} Ay(1) explilkox, + ky{x, — 1)]}
+ Ay (1) exp{i[ k;x, + ka(xz + 1) ]} + Ax(1) explil kox, + K, (x: + 1)1

J
=2(—5 cos k, + ¢ cos k;)Al(l) expli(k,x, + kyx;)]

+2(—gcos k,+tcos k,)Az(l) expliksx, + k. x5)]. (40}

{In (40} we have ignored an overall constant energy shift.) Hence a necessary condition
for an energy eigenstate is
J

—Z=l. (41)

This is also the supersymmetric condition (27). Henceforth we will choose units and
phases so that t = —1 and also require (41} te hold. For the term in {36) proportional
to

tertRt It T *
S fa f i fR10)
the energy eigenstate condition gives

(2(cos k,+cos k) +1}a(x,x,+1)

=a(x,+1, x;)+a{x,, x,+2)+a(x,—1, x;+1) {42)
and
(2(cos k;+cos k) +1)e(x,+1, x,)
=alx,x +1}+alx+1,x,—1}+a(x+2, x,). (43)
These two equations lead to
A(2)=u"A5(2)+ 1" A (1) A (D) =u"A,(1)+v"7A5(2) (44)
where
ik ik
= 2
and
L PRUNS )

ESUREES Ty
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We need, of course, to be also able to consider situations other than that of (29). If
there are N* down spins at x;,..., xxt and N° holes at Xnlsqs--- 5 XNty no then the
Bethe ansatz is

' NigNO
al{x,,..., Xylent) = on AP(Q)exp(i ;l kpjxoj)ﬂ(xo) (47)

ESnlond

where #(xp) denotes the region xg; <xo,<...< Xg(ntsn0)

For the Bethe ansatz solution to work, entities such as u'? and v'? have to satisfy
some identities. However we will not explicitly check these consistency conditions
since we have shown elsewhere (Sarkar 1990a) that the supersymmetric —J model
can be mapped onto a model of Lai (1974). The latter model has been shown by Lai
to be soluble by the Bethe ansatz.

In order to proceed further, periodic boundary conditions have to be imposed on
the wavefunction. This is by now a standard although somewhat complicated procedure
(Yang 1967, Sutherland 1975, Lai and Yang 1971) and is known as the generalized
Bethe hypothesis. It is discussed in detail by Andrei ef al (1983) and so we will just
give the results of the procedure. Apart from the ks involved in the Bethe ansatz, some
auxiliary variables A appear which are related to a proper description of the permutation
symmetry of Ap(Q). The equations that emerge are

Nt g o YL NYENY e
e T (Remots) Ty e (¥
=1 I(Ay_a_,‘)_i k=1 l(aj_a’k)_l
and
NiNs i(Aa—a,-)+%)
——I )= 49
jl;[l (1(As—aj)_lz @)
where @; =3tan sk;. It is customary to take the logarithm of these equations. If
#(x)=-2tan 'x (50)
then
W 1—ix
= . 51
1+ix Gy
On taking logarithms of both sides of {51) we get
1-ix
f=-il +2mt 52
- "
where J is an integer. Using these elementary facts, (48} and (49) give
N+ O nO
k=1 y=1
N+ NO
027" —2a;)+ 27 =0, (54)
=1

J

These equations readily generalize to the m fermion Ravour case alluded to earlier. In
the generalized Bethe hypothesis if there are m fermion flavours then there are (m —1)
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flavours of A. The resulting equations are

N-NI N-N1-N2
Nk;=2ml— % 6la;—ey}+ ¥ 8(2a;-2A1)
k=1 =1
N=ZT_ N? ’
o 8(ALT-ATY ’
¥'=1
N-E2INI
=27J7T 4 X 0QAT-2A57)
L ()
+ ¥ B8QAL-2A)) (2=sr=sm-1)
F=1
and
N*E;’LlN"

Y OBQRATT = 2ATT 20T =0
y=1
The r on A" is the flavour index and the range of vy is 1= y=<(N-3/1] N’}.
We will leave further discussion of the m flavour case for elsewhere. For any lattice
of macroscopic size, (53) and (54) are too complicated. Consequently we will follow
the customary practice and convert to a set of coupled integral equations. The reasonable

assumption is made that

1
X -—aj"-O(ﬁ) (56)
and
1
A,,+1—A,,~O(ﬁ).
From (53)
N=N!
271'(Jj+1 _J_,) = Z (e(aj+1 —ay) - 9(0{; — ay))
k=1
N-N'-N?

- Y (8254, -2A)— 02, —2AL))

¥=1
+2N{tan"'(2a;,,) —tan"'(2a;)]. {57)
The general experience with the Bethe ansatz shows that for the ground state J,,., —J; = 1.
Excited states appear when there are j' such that J,.,., —J,=2. J" is called a hole. Hence

21:'(1 -3 Sﬁ-) +27w2% &
J J

N=-N! N=-N'-N2
= kZl Br(aj_ak)(ajJrl_aj) : Br(zaj_zAL)z(aj+l_aj)
= =
1
+2N1+—4&}2(aj+l—a,-). (58)
If N, is the number of holes then
N, ) 1 NN 9 N-NI-N? 1
— el I ! — ) —— ! — 4+
JE] la—aj)tpla) ~ k; (e —ay) N yél 6'(2a —2A,) [T aa’ (59)
where
27 1
Pl(ﬁ‘j)=_ (60)

N (aj+] - a’j)l
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In the N - limit p, is a distribution and the sums on the right-hand side of (59)
become integrals, and consequently

20 N h
pila)+— ¥ 8(a—aj)
N3

1 1 , ,
=‘;Jm‘_a—w'<“’d“
2 1 4
+;I 1+4(a—A') peAA’) A (61)

These integrals will have limits which we will take to be [—ag, ao] and [— A}, Ag] and
we will see how these are determined by the concentrations of down spins and holes.
Similarly from (54)

N-N!
2a(Jha =T =— ¥ (8(2A}: —2a;)— 0(2A} —2a))). (62)
j=1
If A} are the hole values of A', then
2ar N 2 [ mla)
LA Wil 1_ alh =_j d =S
pZ(A) N-ygl S(A AT) - e a1+4(Al_a)2 (63)

where p,(A') is the continuum limit of (277/ N)}[1/(A},, —A})].
We recall that the index j in a; lies in the interval [1, N — N'], and the index ¥ in
Al lies in the interval [1, N — N'— N?]. Hence

o 2 1 2a(N-NY
= |i =) — = 64
and
A 201 2a(N~-N'-N?

1 y_ 1 a1y 28 = ) 65
J'—Al',dA P2(A) ﬂﬂog(A'y+l A'y) NA;,H—'AL N { )
The energy E is

E=202N'+ N*)-2N -2Y cos k;. (66)
S
Since
1—tan’ 3k, 1—4a;
cos k 1+tan’3k; 1+4a] (67)
then
E 1 (™ o1 J’“o 4p,(a)
=2 - da———3. 68
N 2 ’”'J'—m'. dA’ px(A7) 27 ) al+4a2 (68}
From (64) and (65} it is clear that
Ay=0 and @y =00 (69)

corresponds 10 the half-filling case where the model reduces to the Heisenberg model.
In general the integral equations (61) and {63) need to be solved numerically or through
approximate application of Wiener-Hopf techniques (Andrei ef al 1983). We will give
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an analytic treatment valid near half-filling, i.e. a, very large and A} very small. This
will enable us to obtain limited information such as the gaplessness of the ground
state. Let us first check what sort of half-filling is implied by (69). Equation (61) becomes

m=p,(a}+i ]Vjowl—f(p;—(fa—,)gda’. {710}
On writing

o= ey )
and on noting that

a21_|_1=7rJ[':—:_eip“ e (72)
it is found that

~{1/2

ﬁ'(p)=27rei-i(-;_::?:cos}:rﬂpr (73)
Since

2 L [ ) da= )= (74)

N'/N=3 (75)

and so there are an equal number of up and down spins.
We shall consider the effect of introducing a smail macroscopic number of real
holes (as opposed to Bethe ansatz holes). Consequently Ag will be small. Let us write

pi(a)=pM(a)+p(a)+... (76)
and
P A= pP (AN + oA+ (77)
2 (= p‘o’(a’)
9) 1 ' 1
A)=— da' ———— T8
PN #jm @ TN e (78)
where p!'"(a) and pS"'(A") are small corrections due to doping.
From (61) in the absence of Bethe ansatz holes we obtain
1 (™ 1 L[ ™% 1
{1 —~ da' ——— (o 1+__I da' (0} a'
Py (a) "Jao o 1+(a_a,)2pl. (a') - @ 1+(a_a,)zpl (a’)
1 [ 1 4
— d b+ (1} ﬁ" +_A| {3) 0 . 79
WJ._QD “ 1+(af--af')2pI () o 0P ( )1+4a2 (79)

written as p'"(a, @y, Ag).)
Since pi'’(a’) is small it is a good approximation to write

%o ! (1) J'OO . 1 () '
e 'y o~ d - .
I A e —ay P @) A e () (80)

—ag
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(Similarly from (63) for completeness we note

2 o0 p(l(ll(a) ) —~,, 1
(DAl 2__I Ju—P1 ) £ i+
e e Ty el L W T T

2 [ pi'(a)
+_ —_——
w,[_mda1+4(/\‘—a)2 (81)

although we will not need the explicit form of p5"’(A') for our first-order calculation.)
On solving (79) by Fourier transformation we find

2 1 1 4A4
(0 L L -ime + +=8 (0)

pi(a) - (1+(af0—ac)2 l+(a0+a)2) T (0)1+4 2 (82)
The magnetization M is

M=}N'-N)=3(N-2(N-NHY+(N-N'=-N?) (83)
and on using (82) we have

M 1 —2ma, 1 4

= 34+ —a "% 1_(0} )‘

N 2 ( - ( wan) e € Agpsz (0) (84}

However a, is a function of Ay, i.e. given a certain doping level the spins align
themselves in such a way so as to minimize the energy. We therefore need to calculate
the energy. From (68) we have

E 2 1 (™ 4p(a) 1 [ = 4pi'(a)
L, PN AN () 1__j ! - do—+1-—-
TN P2 (A0 2w _“uda 1+4a®> 27 —tra 1+4a? (85)
and so
e | _ ( P ag) + pi" (=0} + piV(ao, @0, A Ao) +pi(—ay, 0‘0,1\{[)))
aag ,\II) ks 1+4a0
2 [ 18 |, Al
FJaﬂd 1+ 4a? sa .01 (e, ag, Ay)- (86)
After a certain amount of analysis it is possible to show that
il 1 2 4 ., .
2 (gt L e O Ca + A 0))
dag cosh(2ma,)
8 — LY '
——e 21 —2mg( o) + 8'( o)) (87)
where
R T
fla)=b L (-1 5 (88)
and
o _+_l
=LY () 89
g(a) 2r§l( ) (r+% I (89)
Using asymptotic estimates for /" and g we can deduce

dag
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and so the minimum of energy is found for a, =00, Equation (84) then implies that
M=0 (91)

in the ground state.
In order to consider excited states we have to examine the effect of Bethe ansatz
holes (Andrei ef al 1983). Now we let

PI(Q)_)Pl(a)+APJ(‘1) (92)
and
Pz(Al)"Pz(Al)+Apz(A1) (93)

where Ap,(a) and Ap,(A') are changes in p, and p, due to the presence of Bethe
ansatz holes. Clearly from (61) and (63)

(L LR

2 My
Api(e)t L S(a—al)
j=1

J=

L[ _4pfa)) | 2 J"é Apy(A) ]
=-— P EE—Y + = — e
W,[_m]+(a—a')2da T _Agjl_i_d'(a_Al)ZdA (94)
and
2 NG 2 oo Ap (Ct’)
Aps (A +=— S(A'— AlD =_J d t .
p2( ) N 72] ( A’y ) . [44 1+4(Al —(1')2 (95)

These equations can be solved by Fourier transforming. We obtain

_Aodpy(0) 27 3l ™l

A5
AP coship N 1+eV (%6)
where Ap, is the Fourier transform of Ap,. Similarly
» /210l = 27 —ipall
Ap(p)=e Api(p)—5 L e (97)
N5
Consequently, since
dp . .
Ap,y(0}= I Py Aps(p) {98)
we have
2 1 27 ¥

b ) i
Ap,(0)=— — élﬁ(Ai,h)(l—;(logDA(',) . {(99)

N Zicosh(2mal) N,
We can now calculate the change in energy AE due to the Bethe ansatz holes. From
(68), (85) and (96) we have

AE 2mf N
=1[(210g2A$+1) 1 +210g2

PR 1
N N E.cosh(ZTra}‘) * 21 N

P oA, )] —%A(',Apg(O)- {(100)

The change in the magnetization AM by definition is

AM=3(-2A(N-N")+A(N-N"-N?%) (101)
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which on using

27 ®
—ﬁA(N—N‘)=J‘ Apy(a) da (102)
-0
and
21,-,\( a7 nJl ATy __ A la ooy fanan
7‘-‘\1‘"—” AN JFE LN gApAY) 11U3)
gives
AM =1iN, (104}
and

N, 1 N
1y o _da; _ al . S ih
A(N—=N)I=-3N,— A, (}_);:1 cosh(zwa}’)+~,};‘. (A} )). (105)
The gap above the ground state in (100} is zero since [cosh(2#a[)]™' can be chosen
to be arbitrarily small (or o} arbitrarily large) and A, taken to be non-zero. For these
same conditions A(N — N} is —3 N, which has to be an integer. Consequently the least
complicated zero-energy excitation that has been constructed has angular momentum
1. We have thus obtained valuable information from (61} and (63) with our simple
approximation. Our analysis of the r —.J model bears throughout a strong resemblance
to that for the Heisenberg model. Many generalizations of the latter are possible but
for both physical and mathematical reasons the supersymmetric generalization that
we have considered is a particularly non-trivial one.
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